Associative Model for the Forecasting of Time Series Based on the Gamma Classifier
نویسندگان
چکیده
The paper describes a novel associative model for the forecasting of time series in petroleum engineering. The model is based on the Gamma classifier, which is inspired on the Alpha-Beta associative memories, taking the alpha and beta operators as basis for the gamma operator. The objective is to reproduce and predict future oil production in different scenarios in an adjustable time window. The distinctive features of the experimental data set are spikes, abrupt changes and frequent discontinuities, which considerably decrease the precision of traditional forecasting methods. As experimental results show, this classifier-based predictor exhibits competitive performance. The advantages and limitations of the model, as well as lines of improvement, are discussed.
منابع مشابه
Comparative Study Among Different Time Series Models for Monthly Rainfall Forecasting in Shiraz Synoptic Station, Iran
In this research, monthly rainfall of Shiraz synoptic station from March 1971 to February 2016 was studied using different time series models by ITSM Software. Results showed that the ARMA (1,12) model based on Hannan-Rissanen method was the best model which fitted to the data. Then, to assess the verification and accuracy of the model, the monthly rainfall for 60 months (from March 2011 to Feb...
متن کاملSeismic Data Forecasting: A Sequence Prediction or a Sequence Recognition Task
In this paper, we have tried to predict earthquake events in a cluster of seismic data on pacific ring of fire, using multivariate adaptive regression splines (MARS). The model is employed as either a predictor for a sequence prediction task, or a binary classifier for a sequence recognition problem, which could alternatively help to predict an event. Here, we explain that sequence prediction/r...
متن کاملRainfall-runoff process modeling using time series transfer function
Extended Abstract 1- Introduction Nowadays, forecasting and modeling the rainfall-runoff process is essential for planning and managing water resources. Rainfall-Runoff hydrologic models provide simplified characterizations of the real-world system. A wide range of rainfall-runoff models is currently used by researchers and experts. These models are mainly developed and applied for simulation...
متن کاملA NEW APPROACH BASED ON OPTIMIZATION OF RATIO FOR SEASONAL FUZZY TIME SERIES
In recent years, many studies have been done on forecasting fuzzy time series. First-order fuzzy time series forecasting methods with first-order lagged variables and high-order fuzzy time series forecasting methods with consecutive lagged variables constitute the considerable part of these studies. However, these methods are not effective in forecasting fuzzy time series which contain seasonal...
متن کاملCurrency Exchange Rate Forecasting using Associative Models
Associative Models were created and used for pattern recognition tasks, but recently such models have shown good forecasting capabilities; by a preprocessing of a time series and some fit of the Model. In this paper, the Gamma Classifier is used as a novel alternative for currency exchange rate forecasting, where experimental results indicate that the proposed method can be effective in the Exc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013